您现在位置:民商网 >> 观点 >> 浏览文章

总编辑圈点丨用AI生成数据训练AI或导致模型崩溃,原始内容9次迭代后成了“胡言乱语”

来源:科技日报  张梦然 日期:2024/7/26 1:45:00

《自然》24日正式发表的一篇研究论文指出了一个人工智能(AI)严重问题:用AI生成的数据集训练未来几代机器学习模型,可能会严重“污染”它们的输出,这被称为“模型崩溃”。研究显示,原始内容会在9次迭代以后,变成不相关的“胡言乱语”(演示中一个建筑文本最终变成了野兔的名字),这凸显出使用可靠数据训练AI模型的重要性。

《自然》24日正式发表的一篇研究论文指出了一个人工智能(AI)严重问题:用AI生成的数据集训练未来几代机器学习模型,可能会严重“污染”它们的输出,这被称为“模型崩溃”。研究显示,原始内容会在9次迭代以后,变成不相关的“胡言乱语”(演示中一个建筑文本最终变成了野兔的名字),这凸显出使用可靠数据训练AI模型的重要性。

总编辑圈点丨用AI生成数据训练AI或导致模型崩溃,原始内容9次迭代后成了“胡言乱语”

研究模型测试。
图源:《自然》

生成式AI工具越来越受欢迎,如大语言模型等,这类工具主要用人类生成的输入进行训练。不过,随着这些AI模型在互联网不断壮大,计算机生成内容可能会以递归循环的形式被用于训练其他AI模型或其自身。

包括英国牛津大学在内的联合团队一直在进行相关研究,并在去年论文预印本中提出这一概念。在正式发表的论文中,他们用数学模型演示了AI可能会出现的“模型崩溃”。他们证明了一个AI会忽略训练数据中的某些输出(如不太常见的文本),导致其只用一部分数据集来自我训练。

团队分析了AI模型会如何处理主要由AI生成的数据集。他们发现,给模型输入AI生成的数据,会减弱今后几代模型的学习能力,最终导致了“模型崩溃”。他们测试的几乎所有递归训练语言模型,都容易出现问题。比如,一个用中世纪建筑文本作为原始输入的测试,到第9代的输出已经是一串野兔的名字。

团队指出,用前几代生成的数据集去训练AI,崩溃是一个不可避免的结局。他们认为,必须对数据进行严格过滤。与此同时,这也意味着依赖人类生成内容的AI模型,或许能训练出更高效的AI模型。

总编辑圈点:

对AI来说,“模型崩溃”就像癌症一样,甚至分早期与晚期。在早期时,被“喂”了生成数据的AI会开始失去一些原始正确数据;但在晚期,被“喂”了生成数据的AI会“口吐狂言”——给出完全不符合现实,也和底层数据一点不相关的结果,就像本文中的例子一样。更可怕的是,“模型崩溃”的AI极其固执,错误几乎难以矫正。它会持续强化,最终把错误结果认为是正确的。这一问题值得所有关注生成式AI的人们警惕,因为它等于是在“毒化”AI对真实世界的认知。

(责任编辑:0)

免责声明:

本站原创内容根据公开信息整理或转载,与立场无关,我们力求信息真实、准确,但文章、所示信息、提及内容仅供参考,无法保证该等信息的准确性和完整性、及时性、有效性等,不构成任何建议,据此操作风险自担。转载的属于第三方的信息,已标注作者及来源,并不代表赞成或反对等任何观点,亦不对其真实性负责。

2024年09期
期刊试读
2024年09期

郑重声明:民商网仅提供信息刊登转载功能,所载文章、数据仅供参考,用户需独立做出投资决策,风险自担,投资有风险,选择需谨慎

本站文章来源于网络,版权归原作者或者来源机构所有,如果有涉及任何版权方面的问题,请与及时与我们联系!

Copyright @ 2019 民商网 版权所有

京ICP备19049046号-1 | 京公网安备 11010502039284号